Evaluate
\frac{151}{99}\approx 1.525252525
Factor
\frac{151}{3 ^ {2} \cdot 11} = 1\frac{52}{99} = 1.5252525252525253
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)151}\\\end{array}
Use the 1^{st} digit 1 from dividend 151
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)151}\\\end{array}
Since 1 is less than 99, use the next digit 5 from dividend 151 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)151}\\\end{array}
Use the 2^{nd} digit 5 from dividend 151
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)151}\\\end{array}
Since 15 is less than 99, use the next digit 1 from dividend 151 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)151}\\\end{array}
Use the 3^{rd} digit 1 from dividend 151
\begin{array}{l}\phantom{99)}001\phantom{6}\\99\overline{)151}\\\phantom{99)}\underline{\phantom{9}99\phantom{}}\\\phantom{99)9}52\\\end{array}
Find closest multiple of 99 to 151. We see that 1 \times 99 = 99 is the nearest. Now subtract 99 from 151 to get reminder 52. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }52
Since 52 is less than 99, stop the division. The reminder is 52. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}