Evaluate
\frac{25}{4}=6.25
Factor
\frac{5 ^ {2}}{2 ^ {2}} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)1500}\\\end{array}
Use the 1^{st} digit 1 from dividend 1500
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)1500}\\\end{array}
Since 1 is less than 240, use the next digit 5 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)1500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1500
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)1500}\\\end{array}
Since 15 is less than 240, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)1500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1500
\begin{array}{l}\phantom{240)}000\phantom{6}\\240\overline{)1500}\\\end{array}
Since 150 is less than 240, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{240)}000\phantom{7}\\240\overline{)1500}\\\end{array}
Use the 4^{th} digit 0 from dividend 1500
\begin{array}{l}\phantom{240)}0006\phantom{8}\\240\overline{)1500}\\\phantom{240)}\underline{\phantom{}1440\phantom{}}\\\phantom{240)99}60\\\end{array}
Find closest multiple of 240 to 1500. We see that 6 \times 240 = 1440 is the nearest. Now subtract 1440 from 1500 to get reminder 60. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }60
Since 60 is less than 240, stop the division. The reminder is 60. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}