Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(60x+600\right)\times 150+60x\times 45=x\left(x+10\right)\left(3\times 60+15\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 60x\left(x+10\right), the least common multiple of x,x+10,60.
9000x+90000+60x\times 45=x\left(x+10\right)\left(3\times 60+15\right)
Use the distributive property to multiply 60x+600 by 150.
9000x+90000+2700x=x\left(x+10\right)\left(3\times 60+15\right)
Multiply 60 and 45 to get 2700.
11700x+90000=x\left(x+10\right)\left(3\times 60+15\right)
Combine 9000x and 2700x to get 11700x.
11700x+90000=x\left(x+10\right)\left(180+15\right)
Multiply 3 and 60 to get 180.
11700x+90000=x\left(x+10\right)\times 195
Add 180 and 15 to get 195.
11700x+90000=\left(x^{2}+10x\right)\times 195
Use the distributive property to multiply x by x+10.
11700x+90000=195x^{2}+1950x
Use the distributive property to multiply x^{2}+10x by 195.
11700x+90000-195x^{2}=1950x
Subtract 195x^{2} from both sides.
11700x+90000-195x^{2}-1950x=0
Subtract 1950x from both sides.
9750x+90000-195x^{2}=0
Combine 11700x and -1950x to get 9750x.
-195x^{2}+9750x+90000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9750±\sqrt{9750^{2}-4\left(-195\right)\times 90000}}{2\left(-195\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -195 for a, 9750 for b, and 90000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9750±\sqrt{95062500-4\left(-195\right)\times 90000}}{2\left(-195\right)}
Square 9750.
x=\frac{-9750±\sqrt{95062500+780\times 90000}}{2\left(-195\right)}
Multiply -4 times -195.
x=\frac{-9750±\sqrt{95062500+70200000}}{2\left(-195\right)}
Multiply 780 times 90000.
x=\frac{-9750±\sqrt{165262500}}{2\left(-195\right)}
Add 95062500 to 70200000.
x=\frac{-9750±150\sqrt{7345}}{2\left(-195\right)}
Take the square root of 165262500.
x=\frac{-9750±150\sqrt{7345}}{-390}
Multiply 2 times -195.
x=\frac{150\sqrt{7345}-9750}{-390}
Now solve the equation x=\frac{-9750±150\sqrt{7345}}{-390} when ± is plus. Add -9750 to 150\sqrt{7345}.
x=-\frac{5\sqrt{7345}}{13}+25
Divide -9750+150\sqrt{7345} by -390.
x=\frac{-150\sqrt{7345}-9750}{-390}
Now solve the equation x=\frac{-9750±150\sqrt{7345}}{-390} when ± is minus. Subtract 150\sqrt{7345} from -9750.
x=\frac{5\sqrt{7345}}{13}+25
Divide -9750-150\sqrt{7345} by -390.
x=-\frac{5\sqrt{7345}}{13}+25 x=\frac{5\sqrt{7345}}{13}+25
The equation is now solved.
\left(60x+600\right)\times 150+60x\times 45=x\left(x+10\right)\left(3\times 60+15\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 60x\left(x+10\right), the least common multiple of x,x+10,60.
9000x+90000+60x\times 45=x\left(x+10\right)\left(3\times 60+15\right)
Use the distributive property to multiply 60x+600 by 150.
9000x+90000+2700x=x\left(x+10\right)\left(3\times 60+15\right)
Multiply 60 and 45 to get 2700.
11700x+90000=x\left(x+10\right)\left(3\times 60+15\right)
Combine 9000x and 2700x to get 11700x.
11700x+90000=x\left(x+10\right)\left(180+15\right)
Multiply 3 and 60 to get 180.
11700x+90000=x\left(x+10\right)\times 195
Add 180 and 15 to get 195.
11700x+90000=\left(x^{2}+10x\right)\times 195
Use the distributive property to multiply x by x+10.
11700x+90000=195x^{2}+1950x
Use the distributive property to multiply x^{2}+10x by 195.
11700x+90000-195x^{2}=1950x
Subtract 195x^{2} from both sides.
11700x+90000-195x^{2}-1950x=0
Subtract 1950x from both sides.
9750x+90000-195x^{2}=0
Combine 11700x and -1950x to get 9750x.
9750x-195x^{2}=-90000
Subtract 90000 from both sides. Anything subtracted from zero gives its negation.
-195x^{2}+9750x=-90000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-195x^{2}+9750x}{-195}=-\frac{90000}{-195}
Divide both sides by -195.
x^{2}+\frac{9750}{-195}x=-\frac{90000}{-195}
Dividing by -195 undoes the multiplication by -195.
x^{2}-50x=-\frac{90000}{-195}
Divide 9750 by -195.
x^{2}-50x=\frac{6000}{13}
Reduce the fraction \frac{-90000}{-195} to lowest terms by extracting and canceling out 15.
x^{2}-50x+\left(-25\right)^{2}=\frac{6000}{13}+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=\frac{6000}{13}+625
Square -25.
x^{2}-50x+625=\frac{14125}{13}
Add \frac{6000}{13} to 625.
\left(x-25\right)^{2}=\frac{14125}{13}
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{\frac{14125}{13}}
Take the square root of both sides of the equation.
x-25=\frac{5\sqrt{7345}}{13} x-25=-\frac{5\sqrt{7345}}{13}
Simplify.
x=\frac{5\sqrt{7345}}{13}+25 x=-\frac{5\sqrt{7345}}{13}+25
Add 25 to both sides of the equation.