Evaluate
\frac{75}{23}\approx 3.260869565
Factor
\frac{3 \cdot 5 ^ {2}}{23} = 3\frac{6}{23} = 3.260869565217391
Share
Copied to clipboard
\begin{array}{l}\phantom{46)}\phantom{1}\\46\overline{)150}\\\end{array}
Use the 1^{st} digit 1 from dividend 150
\begin{array}{l}\phantom{46)}0\phantom{2}\\46\overline{)150}\\\end{array}
Since 1 is less than 46, use the next digit 5 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{46)}0\phantom{3}\\46\overline{)150}\\\end{array}
Use the 2^{nd} digit 5 from dividend 150
\begin{array}{l}\phantom{46)}00\phantom{4}\\46\overline{)150}\\\end{array}
Since 15 is less than 46, use the next digit 0 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{46)}00\phantom{5}\\46\overline{)150}\\\end{array}
Use the 3^{rd} digit 0 from dividend 150
\begin{array}{l}\phantom{46)}003\phantom{6}\\46\overline{)150}\\\phantom{46)}\underline{\phantom{}138\phantom{}}\\\phantom{46)9}12\\\end{array}
Find closest multiple of 46 to 150. We see that 3 \times 46 = 138 is the nearest. Now subtract 138 from 150 to get reminder 12. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }12
Since 12 is less than 46, stop the division. The reminder is 12. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}