Evaluate
\frac{150}{41}\approx 3.658536585
Factor
\frac{2 \cdot 3 \cdot 5 ^ {2}}{41} = 3\frac{27}{41} = 3.658536585365854
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)150}\\\end{array}
Use the 1^{st} digit 1 from dividend 150
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)150}\\\end{array}
Since 1 is less than 41, use the next digit 5 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)150}\\\end{array}
Use the 2^{nd} digit 5 from dividend 150
\begin{array}{l}\phantom{41)}00\phantom{4}\\41\overline{)150}\\\end{array}
Since 15 is less than 41, use the next digit 0 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{41)}00\phantom{5}\\41\overline{)150}\\\end{array}
Use the 3^{rd} digit 0 from dividend 150
\begin{array}{l}\phantom{41)}003\phantom{6}\\41\overline{)150}\\\phantom{41)}\underline{\phantom{}123\phantom{}}\\\phantom{41)9}27\\\end{array}
Find closest multiple of 41 to 150. We see that 3 \times 41 = 123 is the nearest. Now subtract 123 from 150 to get reminder 27. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }27
Since 27 is less than 41, stop the division. The reminder is 27. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}