Evaluate
\frac{25}{6}\approx 4.166666667
Factor
\frac{5 ^ {2}}{2 \cdot 3} = 4\frac{1}{6} = 4.166666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)150}\\\end{array}
Use the 1^{st} digit 1 from dividend 150
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)150}\\\end{array}
Since 1 is less than 36, use the next digit 5 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)150}\\\end{array}
Use the 2^{nd} digit 5 from dividend 150
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)150}\\\end{array}
Since 15 is less than 36, use the next digit 0 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)150}\\\end{array}
Use the 3^{rd} digit 0 from dividend 150
\begin{array}{l}\phantom{36)}004\phantom{6}\\36\overline{)150}\\\phantom{36)}\underline{\phantom{}144\phantom{}}\\\phantom{36)99}6\\\end{array}
Find closest multiple of 36 to 150. We see that 4 \times 36 = 144 is the nearest. Now subtract 144 from 150 to get reminder 6. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }6
Since 6 is less than 36, stop the division. The reminder is 6. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}