\frac{ 15 }{ x+15 } =6 \%
Solve for x
x=235
Graph
Share
Copied to clipboard
100\times 15=\left(x+15\right)\times 6
Variable x cannot be equal to -15 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+15\right), the least common multiple of x+15,100.
1500=\left(x+15\right)\times 6
Multiply 100 and 15 to get 1500.
1500=6x+90
Use the distributive property to multiply x+15 by 6.
6x+90=1500
Swap sides so that all variable terms are on the left hand side.
6x=1500-90
Subtract 90 from both sides.
6x=1410
Subtract 90 from 1500 to get 1410.
x=\frac{1410}{6}
Divide both sides by 6.
x=235
Divide 1410 by 6 to get 235.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}