Solve for x
x=5\sqrt{26}+30\approx 55.495097568
x=30-5\sqrt{26}\approx 4.504902432
Graph
Share
Copied to clipboard
\left(x-50\right)\times 15+x\times 15=3x\left(x-50\right)
Variable x cannot be equal to any of the values 0,50 since division by zero is not defined. Multiply both sides of the equation by x\left(x-50\right), the least common multiple of x,x-50.
15x-750+x\times 15=3x\left(x-50\right)
Use the distributive property to multiply x-50 by 15.
30x-750=3x\left(x-50\right)
Combine 15x and x\times 15 to get 30x.
30x-750=3x^{2}-150x
Use the distributive property to multiply 3x by x-50.
30x-750-3x^{2}=-150x
Subtract 3x^{2} from both sides.
30x-750-3x^{2}+150x=0
Add 150x to both sides.
180x-750-3x^{2}=0
Combine 30x and 150x to get 180x.
-3x^{2}+180x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-180±\sqrt{180^{2}-4\left(-3\right)\left(-750\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 180 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-180±\sqrt{32400-4\left(-3\right)\left(-750\right)}}{2\left(-3\right)}
Square 180.
x=\frac{-180±\sqrt{32400+12\left(-750\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-180±\sqrt{32400-9000}}{2\left(-3\right)}
Multiply 12 times -750.
x=\frac{-180±\sqrt{23400}}{2\left(-3\right)}
Add 32400 to -9000.
x=\frac{-180±30\sqrt{26}}{2\left(-3\right)}
Take the square root of 23400.
x=\frac{-180±30\sqrt{26}}{-6}
Multiply 2 times -3.
x=\frac{30\sqrt{26}-180}{-6}
Now solve the equation x=\frac{-180±30\sqrt{26}}{-6} when ± is plus. Add -180 to 30\sqrt{26}.
x=30-5\sqrt{26}
Divide -180+30\sqrt{26} by -6.
x=\frac{-30\sqrt{26}-180}{-6}
Now solve the equation x=\frac{-180±30\sqrt{26}}{-6} when ± is minus. Subtract 30\sqrt{26} from -180.
x=5\sqrt{26}+30
Divide -180-30\sqrt{26} by -6.
x=30-5\sqrt{26} x=5\sqrt{26}+30
The equation is now solved.
\left(x-50\right)\times 15+x\times 15=3x\left(x-50\right)
Variable x cannot be equal to any of the values 0,50 since division by zero is not defined. Multiply both sides of the equation by x\left(x-50\right), the least common multiple of x,x-50.
15x-750+x\times 15=3x\left(x-50\right)
Use the distributive property to multiply x-50 by 15.
30x-750=3x\left(x-50\right)
Combine 15x and x\times 15 to get 30x.
30x-750=3x^{2}-150x
Use the distributive property to multiply 3x by x-50.
30x-750-3x^{2}=-150x
Subtract 3x^{2} from both sides.
30x-750-3x^{2}+150x=0
Add 150x to both sides.
180x-750-3x^{2}=0
Combine 30x and 150x to get 180x.
180x-3x^{2}=750
Add 750 to both sides. Anything plus zero gives itself.
-3x^{2}+180x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+180x}{-3}=\frac{750}{-3}
Divide both sides by -3.
x^{2}+\frac{180}{-3}x=\frac{750}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-60x=\frac{750}{-3}
Divide 180 by -3.
x^{2}-60x=-250
Divide 750 by -3.
x^{2}-60x+\left(-30\right)^{2}=-250+\left(-30\right)^{2}
Divide -60, the coefficient of the x term, by 2 to get -30. Then add the square of -30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-60x+900=-250+900
Square -30.
x^{2}-60x+900=650
Add -250 to 900.
\left(x-30\right)^{2}=650
Factor x^{2}-60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{650}
Take the square root of both sides of the equation.
x-30=5\sqrt{26} x-30=-5\sqrt{26}
Simplify.
x=5\sqrt{26}+30 x=30-5\sqrt{26}
Add 30 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}