Solve for p
p=15
Share
Copied to clipboard
\left(p+2\right)\times 15+p\left(6p-5\right)=6p\left(p+2\right)
Variable p cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by p\left(p+2\right), the least common multiple of p,p+2.
15p+30+p\left(6p-5\right)=6p\left(p+2\right)
Use the distributive property to multiply p+2 by 15.
15p+30+6p^{2}-5p=6p\left(p+2\right)
Use the distributive property to multiply p by 6p-5.
10p+30+6p^{2}=6p\left(p+2\right)
Combine 15p and -5p to get 10p.
10p+30+6p^{2}=6p^{2}+12p
Use the distributive property to multiply 6p by p+2.
10p+30+6p^{2}-6p^{2}=12p
Subtract 6p^{2} from both sides.
10p+30=12p
Combine 6p^{2} and -6p^{2} to get 0.
10p+30-12p=0
Subtract 12p from both sides.
-2p+30=0
Combine 10p and -12p to get -2p.
-2p=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
p=\frac{-30}{-2}
Divide both sides by -2.
p=15
Divide -30 by -2 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}