Evaluate
\frac{45}{89}\approx 0.505617978
Factor
\frac{3 ^ {2} \cdot 5}{89} = 0.5056179775280899
Share
Copied to clipboard
\frac{\frac{15}{8}}{\frac{5}{12}\times 8+\frac{3}{8}}
Divide \frac{5}{12} by \frac{1}{8} by multiplying \frac{5}{12} by the reciprocal of \frac{1}{8}.
\frac{\frac{15}{8}}{\frac{5\times 8}{12}+\frac{3}{8}}
Express \frac{5}{12}\times 8 as a single fraction.
\frac{\frac{15}{8}}{\frac{40}{12}+\frac{3}{8}}
Multiply 5 and 8 to get 40.
\frac{\frac{15}{8}}{\frac{10}{3}+\frac{3}{8}}
Reduce the fraction \frac{40}{12} to lowest terms by extracting and canceling out 4.
\frac{\frac{15}{8}}{\frac{80}{24}+\frac{9}{24}}
Least common multiple of 3 and 8 is 24. Convert \frac{10}{3} and \frac{3}{8} to fractions with denominator 24.
\frac{\frac{15}{8}}{\frac{80+9}{24}}
Since \frac{80}{24} and \frac{9}{24} have the same denominator, add them by adding their numerators.
\frac{\frac{15}{8}}{\frac{89}{24}}
Add 80 and 9 to get 89.
\frac{15}{8}\times \frac{24}{89}
Divide \frac{15}{8} by \frac{89}{24} by multiplying \frac{15}{8} by the reciprocal of \frac{89}{24}.
\frac{15\times 24}{8\times 89}
Multiply \frac{15}{8} times \frac{24}{89} by multiplying numerator times numerator and denominator times denominator.
\frac{360}{712}
Do the multiplications in the fraction \frac{15\times 24}{8\times 89}.
\frac{45}{89}
Reduce the fraction \frac{360}{712} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}