Factor
\frac{\left(3-2x\right)\left(2x+5\right)}{4}
Evaluate
\frac{15}{4}-x-x^{2}
Graph
Share
Copied to clipboard
\frac{15-4x-4x^{2}}{4}
Factor out \frac{1}{4}.
-4x^{2}-4x+15
Consider 15-4x-4x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=-4\times 15=-60
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=6 b=-10
The solution is the pair that gives sum -4.
\left(-4x^{2}+6x\right)+\left(-10x+15\right)
Rewrite -4x^{2}-4x+15 as \left(-4x^{2}+6x\right)+\left(-10x+15\right).
2x\left(-2x+3\right)+5\left(-2x+3\right)
Factor out 2x in the first and 5 in the second group.
\left(-2x+3\right)\left(2x+5\right)
Factor out common term -2x+3 by using distributive property.
\frac{\left(-2x+3\right)\left(2x+5\right)}{4}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}