Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{15\left(2\sqrt{5}-5\right)}{\left(2\sqrt{5}+5\right)\left(2\sqrt{5}-5\right)}
Rationalize the denominator of \frac{15}{2\sqrt{5}+5} by multiplying numerator and denominator by 2\sqrt{5}-5.
\frac{15\left(2\sqrt{5}-5\right)}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Consider \left(2\sqrt{5}+5\right)\left(2\sqrt{5}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{15\left(2\sqrt{5}-5\right)}{2^{2}\left(\sqrt{5}\right)^{2}-5^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{15\left(2\sqrt{5}-5\right)}{4\left(\sqrt{5}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{15\left(2\sqrt{5}-5\right)}{4\times 5-5^{2}}
The square of \sqrt{5} is 5.
\frac{15\left(2\sqrt{5}-5\right)}{20-5^{2}}
Multiply 4 and 5 to get 20.
\frac{15\left(2\sqrt{5}-5\right)}{20-25}
Calculate 5 to the power of 2 and get 25.
\frac{15\left(2\sqrt{5}-5\right)}{-5}
Subtract 25 from 20 to get -5.
-3\left(2\sqrt{5}-5\right)
Divide 15\left(2\sqrt{5}-5\right) by -5 to get -3\left(2\sqrt{5}-5\right).
-6\sqrt{5}+15
Use the distributive property to multiply -3 by 2\sqrt{5}-5.