Evaluate
\frac{15a^{2}}{2}+\frac{a}{12}
Factor
\frac{a\left(90a+1\right)}{12}
Share
Copied to clipboard
\frac{15}{2}a^{2}+\frac{1}{6}a-1-\frac{1}{4}a+5-4+\frac{1}{6}a
Combine -\frac{1}{3}a and \frac{1}{2}a to get \frac{1}{6}a.
\frac{15}{2}a^{2}-\frac{1}{12}a-1+5-4+\frac{1}{6}a
Combine \frac{1}{6}a and -\frac{1}{4}a to get -\frac{1}{12}a.
\frac{15}{2}a^{2}-\frac{1}{12}a+4-4+\frac{1}{6}a
Add -1 and 5 to get 4.
\frac{15}{2}a^{2}-\frac{1}{12}a+\frac{1}{6}a
Subtract 4 from 4 to get 0.
\frac{15}{2}a^{2}+\frac{1}{12}a
Combine -\frac{1}{12}a and \frac{1}{6}a to get \frac{1}{12}a.
\frac{90a^{2}+a}{12}
Factor out \frac{1}{12}.
90a^{2}+a
Consider 90a^{2}-4a-12+6a-3a+60-48+2a. Multiply and combine like terms.
a\left(90a+1\right)
Consider 90a^{2}+a. Factor out a.
\frac{a\left(90a+1\right)}{12}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}