Evaluate
-51\sqrt{6}-155\approx -279.923976882
Share
Copied to clipboard
\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Rationalize the denominator of \frac{15}{\sqrt{6}+1} by multiplying numerator and denominator by \sqrt{6}-1.
\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}\right)^{2}-1^{2}}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Consider \left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{15\left(\sqrt{6}-1\right)}{6-1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Square \sqrt{6}. Square 1.
\frac{15\left(\sqrt{6}-1\right)}{5}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Subtract 1 from 6 to get 5.
3\left(\sqrt{6}-1\right)+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Divide 15\left(\sqrt{6}-1\right) by 5 to get 3\left(\sqrt{6}-1\right).
3\left(\sqrt{6}-1\right)+\frac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Rationalize the denominator of \frac{4}{\sqrt{6}-2} by multiplying numerator and denominator by \sqrt{6}+2.
3\left(\sqrt{6}-1\right)+\frac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Consider \left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{6}-1\right)+\frac{4\left(\sqrt{6}+2\right)}{6-4}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Square \sqrt{6}. Square 2.
3\left(\sqrt{6}-1\right)+\frac{4\left(\sqrt{6}+2\right)}{2}-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Subtract 4 from 6 to get 2.
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-\frac{12}{3-\sqrt{6}}\left(11+\sqrt{6}\right)
Divide 4\left(\sqrt{6}+2\right) by 2 to get 2\left(\sqrt{6}+2\right).
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-\frac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\left(11+\sqrt{6}\right)
Rationalize the denominator of \frac{12}{3-\sqrt{6}} by multiplying numerator and denominator by 3+\sqrt{6}.
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-\frac{12\left(3+\sqrt{6}\right)}{3^{2}-\left(\sqrt{6}\right)^{2}}\left(11+\sqrt{6}\right)
Consider \left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-\frac{12\left(3+\sqrt{6}\right)}{9-6}\left(11+\sqrt{6}\right)
Square 3. Square \sqrt{6}.
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-\frac{12\left(3+\sqrt{6}\right)}{3}\left(11+\sqrt{6}\right)
Subtract 6 from 9 to get 3.
3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\left(11+\sqrt{6}\right)
Divide 12\left(3+\sqrt{6}\right) by 3 to get 4\left(3+\sqrt{6}\right).
3\sqrt{6}-3+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\left(11+\sqrt{6}\right)
Use the distributive property to multiply 3 by \sqrt{6}-1.
3\sqrt{6}-3+2\sqrt{6}+4-4\left(3+\sqrt{6}\right)\left(11+\sqrt{6}\right)
Use the distributive property to multiply 2 by \sqrt{6}+2.
5\sqrt{6}-3+4-4\left(3+\sqrt{6}\right)\left(11+\sqrt{6}\right)
Combine 3\sqrt{6} and 2\sqrt{6} to get 5\sqrt{6}.
5\sqrt{6}+1-4\left(3+\sqrt{6}\right)\left(11+\sqrt{6}\right)
Add -3 and 4 to get 1.
5\sqrt{6}+1+\left(-12-4\sqrt{6}\right)\left(11+\sqrt{6}\right)
Use the distributive property to multiply -4 by 3+\sqrt{6}.
5\sqrt{6}+1-132-12\sqrt{6}-44\sqrt{6}-4\left(\sqrt{6}\right)^{2}
Apply the distributive property by multiplying each term of -12-4\sqrt{6} by each term of 11+\sqrt{6}.
5\sqrt{6}+1-132-56\sqrt{6}-4\left(\sqrt{6}\right)^{2}
Combine -12\sqrt{6} and -44\sqrt{6} to get -56\sqrt{6}.
5\sqrt{6}+1-132-56\sqrt{6}-4\times 6
The square of \sqrt{6} is 6.
5\sqrt{6}+1-132-56\sqrt{6}-24
Multiply -4 and 6 to get -24.
5\sqrt{6}+1-156-56\sqrt{6}
Subtract 24 from -132 to get -156.
5\sqrt{6}-155-56\sqrt{6}
Subtract 156 from 1 to get -155.
-51\sqrt{6}-155
Combine 5\sqrt{6} and -56\sqrt{6} to get -51\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}