Evaluate
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x\left(x-4\right)\left(x+1\right)}
Expand
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x\left(x^{2}-3x-4\right)}
Graph
Share
Copied to clipboard
\frac{\left(14x-28\right)x^{2}}{x^{2}-3x-4}+9x+\frac{8}{x}-2
Express \frac{14x-28}{x^{2}-3x-4}x^{2} as a single fraction.
\frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)}+9x-2+\frac{8}{x}
Factor x^{2}-3x-4.
\frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)}+\frac{\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x-2 times \frac{\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(14x-28\right)x^{2}+\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Since \frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)} and \frac{\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{14x^{3}-28x^{2}+9x^{3}-27x^{2}-36x-2x^{2}+6x+8}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Do the multiplications in \left(14x-28\right)x^{2}+\left(9x-2\right)\left(x-4\right)\left(x+1\right).
\frac{23x^{3}-57x^{2}-30x+8}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Combine like terms in 14x^{3}-28x^{2}+9x^{3}-27x^{2}-36x-2x^{2}+6x+8.
\frac{\left(23x^{3}-57x^{2}-30x+8\right)x}{x\left(x-4\right)\left(x+1\right)}+\frac{8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+1\right) and x is x\left(x-4\right)\left(x+1\right). Multiply \frac{23x^{3}-57x^{2}-30x+8}{\left(x-4\right)\left(x+1\right)} times \frac{x}{x}. Multiply \frac{8}{x} times \frac{\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(23x^{3}-57x^{2}-30x+8\right)x+8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)}
Since \frac{\left(23x^{3}-57x^{2}-30x+8\right)x}{x\left(x-4\right)\left(x+1\right)} and \frac{8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{23x^{4}-57x^{3}-30x^{2}+8x+8x^{2}+8x-32x-32}{x\left(x-4\right)\left(x+1\right)}
Do the multiplications in \left(23x^{3}-57x^{2}-30x+8\right)x+8\left(x-4\right)\left(x+1\right).
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x\left(x-4\right)\left(x+1\right)}
Combine like terms in 23x^{4}-57x^{3}-30x^{2}+8x+8x^{2}+8x-32x-32.
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x^{3}-3x^{2}-4x}
Expand x\left(x-4\right)\left(x+1\right).
\frac{\left(14x-28\right)x^{2}}{x^{2}-3x-4}+9x+\frac{8}{x}-2
Express \frac{14x-28}{x^{2}-3x-4}x^{2} as a single fraction.
\frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)}+9x-2+\frac{8}{x}
Factor x^{2}-3x-4.
\frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)}+\frac{\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x-2 times \frac{\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(14x-28\right)x^{2}+\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Since \frac{\left(14x-28\right)x^{2}}{\left(x-4\right)\left(x+1\right)} and \frac{\left(9x-2\right)\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{14x^{3}-28x^{2}+9x^{3}-27x^{2}-36x-2x^{2}+6x+8}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Do the multiplications in \left(14x-28\right)x^{2}+\left(9x-2\right)\left(x-4\right)\left(x+1\right).
\frac{23x^{3}-57x^{2}-30x+8}{\left(x-4\right)\left(x+1\right)}+\frac{8}{x}
Combine like terms in 14x^{3}-28x^{2}+9x^{3}-27x^{2}-36x-2x^{2}+6x+8.
\frac{\left(23x^{3}-57x^{2}-30x+8\right)x}{x\left(x-4\right)\left(x+1\right)}+\frac{8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+1\right) and x is x\left(x-4\right)\left(x+1\right). Multiply \frac{23x^{3}-57x^{2}-30x+8}{\left(x-4\right)\left(x+1\right)} times \frac{x}{x}. Multiply \frac{8}{x} times \frac{\left(x-4\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(23x^{3}-57x^{2}-30x+8\right)x+8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)}
Since \frac{\left(23x^{3}-57x^{2}-30x+8\right)x}{x\left(x-4\right)\left(x+1\right)} and \frac{8\left(x-4\right)\left(x+1\right)}{x\left(x-4\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{23x^{4}-57x^{3}-30x^{2}+8x+8x^{2}+8x-32x-32}{x\left(x-4\right)\left(x+1\right)}
Do the multiplications in \left(23x^{3}-57x^{2}-30x+8\right)x+8\left(x-4\right)\left(x+1\right).
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x\left(x-4\right)\left(x+1\right)}
Combine like terms in 23x^{4}-57x^{3}-30x^{2}+8x+8x^{2}+8x-32x-32.
\frac{23x^{4}-57x^{3}-22x^{2}-16x-32}{x^{3}-3x^{2}-4x}
Expand x\left(x-4\right)\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}