Solve for x
x=\log_{1.03}\left(1.8061125\right)\approx 20.000023701
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(1.03)}+\log_{1.03}\left(1.8061125\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{144489}{80000}=1.03^{x}
Expand \frac{1444.89}{800} by multiplying both numerator and the denominator by 100.
1.03^{x}=\frac{144489}{80000}
Swap sides so that all variable terms are on the left hand side.
1.03^{x}=1.8061125
Use the rules of exponents and logarithms to solve the equation.
\log(1.03^{x})=\log(1.8061125)
Take the logarithm of both sides of the equation.
x\log(1.03)=\log(1.8061125)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(1.8061125)}{\log(1.03)}
Divide both sides by \log(1.03).
x=\log_{1.03}\left(1.8061125\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}