Evaluate
\frac{9}{8}=1.125
Factor
\frac{3 ^ {2}}{2 ^ {3}} = 1\frac{1}{8} = 1.125
Share
Copied to clipboard
\begin{array}{l}\phantom{128)}\phantom{1}\\128\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{128)}0\phantom{2}\\128\overline{)144}\\\end{array}
Since 1 is less than 128, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{128)}0\phantom{3}\\128\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{128)}00\phantom{4}\\128\overline{)144}\\\end{array}
Since 14 is less than 128, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{128)}00\phantom{5}\\128\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{128)}001\phantom{6}\\128\overline{)144}\\\phantom{128)}\underline{\phantom{}128\phantom{}}\\\phantom{128)9}16\\\end{array}
Find closest multiple of 128 to 144. We see that 1 \times 128 = 128 is the nearest. Now subtract 128 from 144 to get reminder 16. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }16
Since 16 is less than 128, stop the division. The reminder is 16. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}