Evaluate
\frac{564606}{209645}\approx 2.693152711
Factor
\frac{2 \cdot 3 ^ {2} \cdot 7 \cdot 4481}{5 \cdot 23 \cdot 1823} = 2\frac{145316}{209645} = 2.693152710534475
Share
Copied to clipboard
\begin{array}{l}\phantom{5241125)}\phantom{1}\\5241125\overline{)14115150}\\\end{array}
Use the 1^{st} digit 1 from dividend 14115150
\begin{array}{l}\phantom{5241125)}0\phantom{2}\\5241125\overline{)14115150}\\\end{array}
Since 1 is less than 5241125, use the next digit 4 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}0\phantom{3}\\5241125\overline{)14115150}\\\end{array}
Use the 2^{nd} digit 4 from dividend 14115150
\begin{array}{l}\phantom{5241125)}00\phantom{4}\\5241125\overline{)14115150}\\\end{array}
Since 14 is less than 5241125, use the next digit 1 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}00\phantom{5}\\5241125\overline{)14115150}\\\end{array}
Use the 3^{rd} digit 1 from dividend 14115150
\begin{array}{l}\phantom{5241125)}000\phantom{6}\\5241125\overline{)14115150}\\\end{array}
Since 141 is less than 5241125, use the next digit 1 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}000\phantom{7}\\5241125\overline{)14115150}\\\end{array}
Use the 4^{th} digit 1 from dividend 14115150
\begin{array}{l}\phantom{5241125)}0000\phantom{8}\\5241125\overline{)14115150}\\\end{array}
Since 1411 is less than 5241125, use the next digit 5 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}0000\phantom{9}\\5241125\overline{)14115150}\\\end{array}
Use the 5^{th} digit 5 from dividend 14115150
\begin{array}{l}\phantom{5241125)}00000\phantom{10}\\5241125\overline{)14115150}\\\end{array}
Since 14115 is less than 5241125, use the next digit 1 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}00000\phantom{11}\\5241125\overline{)14115150}\\\end{array}
Use the 6^{th} digit 1 from dividend 14115150
\begin{array}{l}\phantom{5241125)}000000\phantom{12}\\5241125\overline{)14115150}\\\end{array}
Since 141151 is less than 5241125, use the next digit 5 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}000000\phantom{13}\\5241125\overline{)14115150}\\\end{array}
Use the 7^{th} digit 5 from dividend 14115150
\begin{array}{l}\phantom{5241125)}0000000\phantom{14}\\5241125\overline{)14115150}\\\end{array}
Since 1411515 is less than 5241125, use the next digit 0 from dividend 14115150 and add 0 to the quotient
\begin{array}{l}\phantom{5241125)}0000000\phantom{15}\\5241125\overline{)14115150}\\\end{array}
Use the 8^{th} digit 0 from dividend 14115150
\begin{array}{l}\phantom{5241125)}00000002\phantom{16}\\5241125\overline{)14115150}\\\phantom{5241125)}\underline{\phantom{}10482250\phantom{}}\\\phantom{5241125)9}3632900\\\end{array}
Find closest multiple of 5241125 to 14115150. We see that 2 \times 5241125 = 10482250 is the nearest. Now subtract 10482250 from 14115150 to get reminder 3632900. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }3632900
Since 3632900 is less than 5241125, stop the division. The reminder is 3632900. The topmost line 00000002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}