Evaluate
\frac{70000}{17}\approx 4117.647058824
Factor
\frac{2 ^ {4} \cdot 5 ^ {4} \cdot 7}{17} = 4117\frac{11}{17} = 4117.64705882353
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)140000}\\\end{array}
Use the 1^{st} digit 1 from dividend 140000
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)140000}\\\end{array}
Since 1 is less than 34, use the next digit 4 from dividend 140000 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)140000}\\\end{array}
Use the 2^{nd} digit 4 from dividend 140000
\begin{array}{l}\phantom{34)}00\phantom{4}\\34\overline{)140000}\\\end{array}
Since 14 is less than 34, use the next digit 0 from dividend 140000 and add 0 to the quotient
\begin{array}{l}\phantom{34)}00\phantom{5}\\34\overline{)140000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 140000
\begin{array}{l}\phantom{34)}004\phantom{6}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}4\\\end{array}
Find closest multiple of 34 to 140. We see that 4 \times 34 = 136 is the nearest. Now subtract 136 from 140 to get reminder 4. Add 4 to quotient.
\begin{array}{l}\phantom{34)}004\phantom{7}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\end{array}
Use the 4^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{34)}0041\phantom{8}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\phantom{34)}\underline{\phantom{99}34\phantom{99}}\\\phantom{34)999}6\\\end{array}
Find closest multiple of 34 to 40. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 40 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{34)}0041\phantom{9}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\phantom{34)}\underline{\phantom{99}34\phantom{99}}\\\phantom{34)999}60\\\end{array}
Use the 5^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{34)}00411\phantom{10}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\phantom{34)}\underline{\phantom{99}34\phantom{99}}\\\phantom{34)999}60\\\phantom{34)}\underline{\phantom{999}34\phantom{9}}\\\phantom{34)999}26\\\end{array}
Find closest multiple of 34 to 60. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 60 to get reminder 26. Add 1 to quotient.
\begin{array}{l}\phantom{34)}00411\phantom{11}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\phantom{34)}\underline{\phantom{99}34\phantom{99}}\\\phantom{34)999}60\\\phantom{34)}\underline{\phantom{999}34\phantom{9}}\\\phantom{34)999}260\\\end{array}
Use the 6^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{34)}004117\phantom{12}\\34\overline{)140000}\\\phantom{34)}\underline{\phantom{}136\phantom{999}}\\\phantom{34)99}40\\\phantom{34)}\underline{\phantom{99}34\phantom{99}}\\\phantom{34)999}60\\\phantom{34)}\underline{\phantom{999}34\phantom{9}}\\\phantom{34)999}260\\\phantom{34)}\underline{\phantom{999}238\phantom{}}\\\phantom{34)9999}22\\\end{array}
Find closest multiple of 34 to 260. We see that 7 \times 34 = 238 is the nearest. Now subtract 238 from 260 to get reminder 22. Add 7 to quotient.
\text{Quotient: }4117 \text{Reminder: }22
Since 22 is less than 34, stop the division. The reminder is 22. The topmost line 004117 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4117.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}