Evaluate
\frac{35}{13}\approx 2.692307692
Factor
\frac{5 \cdot 7}{13} = 2\frac{9}{13} = 2.6923076923076925
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)140}\\\end{array}
Use the 1^{st} digit 1 from dividend 140
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)140}\\\end{array}
Since 1 is less than 52, use the next digit 4 from dividend 140 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)140}\\\end{array}
Use the 2^{nd} digit 4 from dividend 140
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)140}\\\end{array}
Since 14 is less than 52, use the next digit 0 from dividend 140 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)140}\\\end{array}
Use the 3^{rd} digit 0 from dividend 140
\begin{array}{l}\phantom{52)}002\phantom{6}\\52\overline{)140}\\\phantom{52)}\underline{\phantom{}104\phantom{}}\\\phantom{52)9}36\\\end{array}
Find closest multiple of 52 to 140. We see that 2 \times 52 = 104 is the nearest. Now subtract 104 from 140 to get reminder 36. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }36
Since 36 is less than 52, stop the division. The reminder is 36. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}