\frac{ 14 \left( { a }_{ 1 } + { a }_{ 1 } +13d \right) }{ 2 } - \frac{ 11 \left( { a }_{ 1 } + { a }_{ 1 } +b { a }_{ 2 } \right) }{ 2 } = 19
Solve for a_2 (complex solution)
\left\{\begin{matrix}a_{2}=-\frac{2\left(19-91d-3a_{1}\right)}{11b}\text{, }&b\neq 0\\a_{2}\in \mathrm{C}\text{, }&a_{1}=\frac{19-91d}{3}\text{ and }b=0\end{matrix}\right.
Solve for a_1
a_{1}=\frac{11a_{2}b}{6}-\frac{91d}{3}+\frac{19}{3}
Solve for a_2
\left\{\begin{matrix}a_{2}=-\frac{2\left(19-91d-3a_{1}\right)}{11b}\text{, }&b\neq 0\\a_{2}\in \mathrm{R}\text{, }&a_{1}=\frac{19-91d}{3}\text{ and }b=0\end{matrix}\right.
Share
Copied to clipboard
14\left(a_{1}+a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Multiply both sides of the equation by 2.
14\left(2a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Use the distributive property to multiply 14 by 2a_{1}+13d.
28a_{1}+182d-11\left(2a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-22a_{1}-11ba_{2}=38
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+182d-11ba_{2}=38
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
182d-11ba_{2}=38-6a_{1}
Subtract 6a_{1} from both sides.
-11ba_{2}=38-6a_{1}-182d
Subtract 182d from both sides.
\left(-11b\right)a_{2}=38-182d-6a_{1}
The equation is in standard form.
\frac{\left(-11b\right)a_{2}}{-11b}=\frac{38-182d-6a_{1}}{-11b}
Divide both sides by -11b.
a_{2}=\frac{38-182d-6a_{1}}{-11b}
Dividing by -11b undoes the multiplication by -11b.
a_{2}=-\frac{2\left(19-91d-3a_{1}\right)}{11b}
Divide 38-6a_{1}-182d by -11b.
14\left(a_{1}+a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Multiply both sides of the equation by 2.
14\left(2a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Use the distributive property to multiply 14 by 2a_{1}+13d.
28a_{1}+182d-11\left(2a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-22a_{1}-11ba_{2}=38
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+182d-11ba_{2}=38
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
6a_{1}-11ba_{2}=38-182d
Subtract 182d from both sides.
6a_{1}=38-182d+11ba_{2}
Add 11ba_{2} to both sides.
6a_{1}=11a_{2}b-182d+38
The equation is in standard form.
\frac{6a_{1}}{6}=\frac{11a_{2}b-182d+38}{6}
Divide both sides by 6.
a_{1}=\frac{11a_{2}b-182d+38}{6}
Dividing by 6 undoes the multiplication by 6.
a_{1}=\frac{11a_{2}b}{6}-\frac{91d}{3}+\frac{19}{3}
Divide 38-182d+11ba_{2} by 6.
14\left(a_{1}+a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Multiply both sides of the equation by 2.
14\left(2a_{1}+13d\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-11\left(a_{1}+a_{1}+ba_{2}\right)=38
Use the distributive property to multiply 14 by 2a_{1}+13d.
28a_{1}+182d-11\left(2a_{1}+ba_{2}\right)=38
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+182d-22a_{1}-11ba_{2}=38
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+182d-11ba_{2}=38
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
182d-11ba_{2}=38-6a_{1}
Subtract 6a_{1} from both sides.
-11ba_{2}=38-6a_{1}-182d
Subtract 182d from both sides.
\left(-11b\right)a_{2}=38-182d-6a_{1}
The equation is in standard form.
\frac{\left(-11b\right)a_{2}}{-11b}=\frac{38-182d-6a_{1}}{-11b}
Divide both sides by -11b.
a_{2}=\frac{38-182d-6a_{1}}{-11b}
Dividing by -11b undoes the multiplication by -11b.
a_{2}=-\frac{2\left(19-91d-3a_{1}\right)}{11b}
Divide 38-6a_{1}-182d by -11b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}