Evaluate
\frac{\sqrt{5}\left(\sqrt{15}+1\right)}{5}\approx 2.179264403
Share
Copied to clipboard
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{14}{5\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by 5\sqrt{3}+\sqrt{5}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-\left(\sqrt{5}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-5}
The square of \sqrt{5} is 5.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{70}
Subtract 5 from 75 to get 70.
\frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right)
Divide 14\left(5\sqrt{3}+\sqrt{5}\right) by 70 to get \frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right).
\frac{1}{5}\times 5\sqrt{3}+\frac{1}{5}\sqrt{5}
Use the distributive property to multiply \frac{1}{5} by 5\sqrt{3}+\sqrt{5}.
\sqrt{3}+\frac{1}{5}\sqrt{5}
Cancel out 5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}