Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{14}{5\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by 5\sqrt{3}+\sqrt{5}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-\left(\sqrt{5}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-5}
The square of \sqrt{5} is 5.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{70}
Subtract 5 from 75 to get 70.
\frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right)
Divide 14\left(5\sqrt{3}+\sqrt{5}\right) by 70 to get \frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right).
\frac{1}{5}\times 5\sqrt{3}+\frac{1}{5}\sqrt{5}
Use the distributive property to multiply \frac{1}{5} by 5\sqrt{3}+\sqrt{5}.
\sqrt{3}+\frac{1}{5}\sqrt{5}
Cancel out 5 and 5.