Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{14\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Rationalize the denominator of \frac{14}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
\frac{14\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(3+\sqrt{2}\right)}{9-2}
Square 3. Square \sqrt{2}.
\frac{14\left(3+\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
2\left(3+\sqrt{2}\right)
Divide 14\left(3+\sqrt{2}\right) by 7 to get 2\left(3+\sqrt{2}\right).
6+2\sqrt{2}
Use the distributive property to multiply 2 by 3+\sqrt{2}.