Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{14}{3}x^{2}+\frac{7}{3}x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{7}{3}±\sqrt{\left(\frac{7}{3}\right)^{2}-4\times \frac{14}{3}\times 7}}{2\times \frac{14}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{14}{3} for a, \frac{7}{3} for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{3}±\sqrt{\frac{49}{9}-4\times \frac{14}{3}\times 7}}{2\times \frac{14}{3}}
Square \frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{3}±\sqrt{\frac{49}{9}-\frac{56}{3}\times 7}}{2\times \frac{14}{3}}
Multiply -4 times \frac{14}{3}.
x=\frac{-\frac{7}{3}±\sqrt{\frac{49}{9}-\frac{392}{3}}}{2\times \frac{14}{3}}
Multiply -\frac{56}{3} times 7.
x=\frac{-\frac{7}{3}±\sqrt{-\frac{1127}{9}}}{2\times \frac{14}{3}}
Add \frac{49}{9} to -\frac{392}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{7}{3}±\frac{7\sqrt{23}i}{3}}{2\times \frac{14}{3}}
Take the square root of -\frac{1127}{9}.
x=\frac{-\frac{7}{3}±\frac{7\sqrt{23}i}{3}}{\frac{28}{3}}
Multiply 2 times \frac{14}{3}.
x=\frac{-7+7\sqrt{23}i}{3\times \frac{28}{3}}
Now solve the equation x=\frac{-\frac{7}{3}±\frac{7\sqrt{23}i}{3}}{\frac{28}{3}} when ± is plus. Add -\frac{7}{3} to \frac{7i\sqrt{23}}{3}.
x=\frac{-1+\sqrt{23}i}{4}
Divide \frac{-7+7i\sqrt{23}}{3} by \frac{28}{3} by multiplying \frac{-7+7i\sqrt{23}}{3} by the reciprocal of \frac{28}{3}.
x=\frac{-7\sqrt{23}i-7}{3\times \frac{28}{3}}
Now solve the equation x=\frac{-\frac{7}{3}±\frac{7\sqrt{23}i}{3}}{\frac{28}{3}} when ± is minus. Subtract \frac{7i\sqrt{23}}{3} from -\frac{7}{3}.
x=\frac{-\sqrt{23}i-1}{4}
Divide \frac{-7-7i\sqrt{23}}{3} by \frac{28}{3} by multiplying \frac{-7-7i\sqrt{23}}{3} by the reciprocal of \frac{28}{3}.
x=\frac{-1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i-1}{4}
The equation is now solved.
\frac{14}{3}x^{2}+\frac{7}{3}x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{14}{3}x^{2}+\frac{7}{3}x+7-7=-7
Subtract 7 from both sides of the equation.
\frac{14}{3}x^{2}+\frac{7}{3}x=-7
Subtracting 7 from itself leaves 0.
\frac{\frac{14}{3}x^{2}+\frac{7}{3}x}{\frac{14}{3}}=-\frac{7}{\frac{14}{3}}
Divide both sides of the equation by \frac{14}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{7}{3}}{\frac{14}{3}}x=-\frac{7}{\frac{14}{3}}
Dividing by \frac{14}{3} undoes the multiplication by \frac{14}{3}.
x^{2}+\frac{1}{2}x=-\frac{7}{\frac{14}{3}}
Divide \frac{7}{3} by \frac{14}{3} by multiplying \frac{7}{3} by the reciprocal of \frac{14}{3}.
x^{2}+\frac{1}{2}x=-\frac{3}{2}
Divide -7 by \frac{14}{3} by multiplying -7 by the reciprocal of \frac{14}{3}.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{3}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{23}{16}
Add -\frac{3}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{23}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{23}i}{4} x+\frac{1}{4}=-\frac{\sqrt{23}i}{4}
Simplify.
x=\frac{-1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.