Evaluate
\frac{1397}{793}\approx 1.761664565
Factor
\frac{11 \cdot 127}{13 \cdot 61} = 1\frac{604}{793} = 1.7616645649432534
Share
Copied to clipboard
\begin{array}{l}\phantom{793)}\phantom{1}\\793\overline{)1397}\\\end{array}
Use the 1^{st} digit 1 from dividend 1397
\begin{array}{l}\phantom{793)}0\phantom{2}\\793\overline{)1397}\\\end{array}
Since 1 is less than 793, use the next digit 3 from dividend 1397 and add 0 to the quotient
\begin{array}{l}\phantom{793)}0\phantom{3}\\793\overline{)1397}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1397
\begin{array}{l}\phantom{793)}00\phantom{4}\\793\overline{)1397}\\\end{array}
Since 13 is less than 793, use the next digit 9 from dividend 1397 and add 0 to the quotient
\begin{array}{l}\phantom{793)}00\phantom{5}\\793\overline{)1397}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1397
\begin{array}{l}\phantom{793)}000\phantom{6}\\793\overline{)1397}\\\end{array}
Since 139 is less than 793, use the next digit 7 from dividend 1397 and add 0 to the quotient
\begin{array}{l}\phantom{793)}000\phantom{7}\\793\overline{)1397}\\\end{array}
Use the 4^{th} digit 7 from dividend 1397
\begin{array}{l}\phantom{793)}0001\phantom{8}\\793\overline{)1397}\\\phantom{793)}\underline{\phantom{9}793\phantom{}}\\\phantom{793)9}604\\\end{array}
Find closest multiple of 793 to 1397. We see that 1 \times 793 = 793 is the nearest. Now subtract 793 from 1397 to get reminder 604. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }604
Since 604 is less than 793, stop the division. The reminder is 604. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}