Evaluate
\frac{67}{24}\approx 2.791666667
Factor
\frac{67}{2 ^ {3} \cdot 3} = 2\frac{19}{24} = 2.7916666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)134}\\\end{array}
Use the 1^{st} digit 1 from dividend 134
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)134}\\\end{array}
Since 1 is less than 48, use the next digit 3 from dividend 134 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)134}\\\end{array}
Use the 2^{nd} digit 3 from dividend 134
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)134}\\\end{array}
Since 13 is less than 48, use the next digit 4 from dividend 134 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)134}\\\end{array}
Use the 3^{rd} digit 4 from dividend 134
\begin{array}{l}\phantom{48)}002\phantom{6}\\48\overline{)134}\\\phantom{48)}\underline{\phantom{9}96\phantom{}}\\\phantom{48)9}38\\\end{array}
Find closest multiple of 48 to 134. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 134 to get reminder 38. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }38
Since 38 is less than 48, stop the division. The reminder is 38. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}