Evaluate
\frac{13}{313}+\frac{12}{313}i\approx 0.041533546+0.038338658i
Real Part
\frac{13}{313} = 0.04153354632587859
Share
Copied to clipboard
\frac{13+12i}{13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12i^{2}}
Multiply complex numbers 13-12i and 13+12i like you multiply binomials.
\frac{13+12i}{13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12\left(-1\right)}
By definition, i^{2} is -1.
\frac{13+12i}{169+156i-156i+144}
Do the multiplications in 13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12\left(-1\right).
\frac{13+12i}{169+144+\left(156-156\right)i}
Combine the real and imaginary parts in 169+156i-156i+144.
\frac{13+12i}{313}
Do the additions in 169+144+\left(156-156\right)i.
\frac{13}{313}+\frac{12}{313}i
Divide 13+12i by 313 to get \frac{13}{313}+\frac{12}{313}i.
Re(\frac{13+12i}{13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12i^{2}})
Multiply complex numbers 13-12i and 13+12i like you multiply binomials.
Re(\frac{13+12i}{13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{13+12i}{169+156i-156i+144})
Do the multiplications in 13\times 13+13\times \left(12i\right)-12i\times 13-12\times 12\left(-1\right).
Re(\frac{13+12i}{169+144+\left(156-156\right)i})
Combine the real and imaginary parts in 169+156i-156i+144.
Re(\frac{13+12i}{313})
Do the additions in 169+144+\left(156-156\right)i.
Re(\frac{13}{313}+\frac{12}{313}i)
Divide 13+12i by 313 to get \frac{13}{313}+\frac{12}{313}i.
\frac{13}{313}
The real part of \frac{13}{313}+\frac{12}{313}i is \frac{13}{313}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}