Evaluate
-\frac{d^{9}}{2}
Differentiate w.r.t. d
-\frac{9d^{8}}{2}
Share
Copied to clipboard
\frac{13^{1}c^{9}d^{10}}{\left(-26\right)^{1}c^{9}d^{1}}
Use the rules of exponents to simplify the expression.
\frac{13^{1}}{\left(-26\right)^{1}}c^{9-9}d^{10-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{13^{1}}{\left(-26\right)^{1}}c^{0}d^{10-1}
Subtract 9 from 9.
\frac{13^{1}}{\left(-26\right)^{1}}d^{10-1}
For any number a except 0, a^{0}=1.
\frac{13^{1}}{\left(-26\right)^{1}}d^{9}
Subtract 1 from 10.
-\frac{1}{2}d^{9}
Reduce the fraction \frac{13}{-26} to lowest terms by extracting and canceling out 13.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{9}}{-2})
Cancel out 13dc^{9} in both numerator and denominator.
9\left(-\frac{1}{2}\right)d^{9-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{9}{2}d^{9-1}
Multiply 9 times -\frac{1}{2}.
-\frac{9}{2}d^{8}
Subtract 1 from 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}