Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. d
Tick mark Image

Similar Problems from Web Search

Share

\frac{13^{1}c^{9}d^{10}}{\left(-26\right)^{1}c^{9}d^{1}}
Use the rules of exponents to simplify the expression.
\frac{13^{1}}{\left(-26\right)^{1}}c^{9-9}d^{10-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{13^{1}}{\left(-26\right)^{1}}c^{0}d^{10-1}
Subtract 9 from 9.
\frac{13^{1}}{\left(-26\right)^{1}}d^{10-1}
For any number a except 0, a^{0}=1.
\frac{13^{1}}{\left(-26\right)^{1}}d^{9}
Subtract 1 from 10.
-\frac{1}{2}d^{9}
Reduce the fraction \frac{13}{-26} to lowest terms by extracting and canceling out 13.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{9}}{-2})
Cancel out 13dc^{9} in both numerator and denominator.
9\left(-\frac{1}{2}\right)d^{9-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{9}{2}d^{9-1}
Multiply 9 times -\frac{1}{2}.
-\frac{9}{2}d^{8}
Subtract 1 from 9.