Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{13}{9}x^{2}+1-x^{2}\leq \frac{4}{3}x
Subtract x^{2} from both sides.
\frac{4}{9}x^{2}+1\leq \frac{4}{3}x
Combine \frac{13}{9}x^{2} and -x^{2} to get \frac{4}{9}x^{2}.
\frac{4}{9}x^{2}+1-\frac{4}{3}x\leq 0
Subtract \frac{4}{3}x from both sides.
\frac{4}{9}x^{2}+1-\frac{4}{3}x=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times 1}}{\frac{4}{9}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{4}{9} for a, -\frac{4}{3} for b, and 1 for c in the quadratic formula.
x=\frac{\frac{4}{3}±0}{\frac{8}{9}}
Do the calculations.
x=\frac{3}{2}
Solutions are the same.
\frac{4}{9}\left(x-\frac{3}{2}\right)^{2}\leq 0
Rewrite the inequality by using the obtained solutions.
x=\frac{3}{2}
Inequality holds for x=\frac{3}{2}.