Evaluate
\frac{158}{65}\approx 2.430769231
Factor
\frac{2 \cdot 79}{5 \cdot 13} = 2\frac{28}{65} = 2.4307692307692306
Share
Copied to clipboard
\frac{13}{16}\left(\frac{9\times 17}{13}-\frac{9}{13}\right)-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Express \frac{9}{13}\times 17 as a single fraction.
\frac{13}{16}\left(\frac{153}{13}-\frac{9}{13}\right)-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Multiply 9 and 17 to get 153.
\frac{13}{16}\times \frac{153-9}{13}-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Since \frac{153}{13} and \frac{9}{13} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{16}\times \frac{144}{13}-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Subtract 9 from 153 to get 144.
\frac{13\times 144}{16\times 13}-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Multiply \frac{13}{16} times \frac{144}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{144}{16}-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Cancel out 13 in both numerator and denominator.
9-\left(\frac{12\times 5+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Divide 144 by 16 to get 9.
9-\left(\frac{60+4}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Multiply 12 and 5 to get 60.
9-\left(\frac{64}{5}-\frac{3\times 13+8}{13}-\frac{2\times 13+8}{13}\right)
Add 60 and 4 to get 64.
9-\left(\frac{64}{5}-\frac{39+8}{13}-\frac{2\times 13+8}{13}\right)
Multiply 3 and 13 to get 39.
9-\left(\frac{64}{5}-\frac{47}{13}-\frac{2\times 13+8}{13}\right)
Add 39 and 8 to get 47.
9-\left(\frac{832}{65}-\frac{235}{65}-\frac{2\times 13+8}{13}\right)
Least common multiple of 5 and 13 is 65. Convert \frac{64}{5} and \frac{47}{13} to fractions with denominator 65.
9-\left(\frac{832-235}{65}-\frac{2\times 13+8}{13}\right)
Since \frac{832}{65} and \frac{235}{65} have the same denominator, subtract them by subtracting their numerators.
9-\left(\frac{597}{65}-\frac{2\times 13+8}{13}\right)
Subtract 235 from 832 to get 597.
9-\left(\frac{597}{65}-\frac{26+8}{13}\right)
Multiply 2 and 13 to get 26.
9-\left(\frac{597}{65}-\frac{34}{13}\right)
Add 26 and 8 to get 34.
9-\left(\frac{597}{65}-\frac{170}{65}\right)
Least common multiple of 65 and 13 is 65. Convert \frac{597}{65} and \frac{34}{13} to fractions with denominator 65.
9-\frac{597-170}{65}
Since \frac{597}{65} and \frac{170}{65} have the same denominator, subtract them by subtracting their numerators.
9-\frac{427}{65}
Subtract 170 from 597 to get 427.
\frac{585}{65}-\frac{427}{65}
Convert 9 to fraction \frac{585}{65}.
\frac{585-427}{65}
Since \frac{585}{65} and \frac{427}{65} have the same denominator, subtract them by subtracting their numerators.
\frac{158}{65}
Subtract 427 from 585 to get 158.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}