Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{13\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
Rationalize the denominator of \frac{13}{1-\sqrt{7}} by multiplying numerator and denominator by 1+\sqrt{7}.
\frac{13\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{13\left(1+\sqrt{7}\right)}{1-7}
Square 1. Square \sqrt{7}.
\frac{13\left(1+\sqrt{7}\right)}{-6}
Subtract 7 from 1 to get -6.
\frac{13+13\sqrt{7}}{-6}
Use the distributive property to multiply 13 by 1+\sqrt{7}.