Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(12x-1\right)\left(-5\right)x=2\left(2x+3\right)
Multiply both sides of the equation by 10, the least common multiple of 2,5.
-25\left(12x-1\right)x=2\left(2x+3\right)
Multiply 5 and -5 to get -25.
\left(-300x+25\right)x=2\left(2x+3\right)
Use the distributive property to multiply -25 by 12x-1.
-300x^{2}+25x=2\left(2x+3\right)
Use the distributive property to multiply -300x+25 by x.
-300x^{2}+25x=4x+6
Use the distributive property to multiply 2 by 2x+3.
-300x^{2}+25x-4x=6
Subtract 4x from both sides.
-300x^{2}+21x=6
Combine 25x and -4x to get 21x.
-300x^{2}+21x-6=0
Subtract 6 from both sides.
x=\frac{-21±\sqrt{21^{2}-4\left(-300\right)\left(-6\right)}}{2\left(-300\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -300 for a, 21 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\left(-300\right)\left(-6\right)}}{2\left(-300\right)}
Square 21.
x=\frac{-21±\sqrt{441+1200\left(-6\right)}}{2\left(-300\right)}
Multiply -4 times -300.
x=\frac{-21±\sqrt{441-7200}}{2\left(-300\right)}
Multiply 1200 times -6.
x=\frac{-21±\sqrt{-6759}}{2\left(-300\right)}
Add 441 to -7200.
x=\frac{-21±3\sqrt{751}i}{2\left(-300\right)}
Take the square root of -6759.
x=\frac{-21±3\sqrt{751}i}{-600}
Multiply 2 times -300.
x=\frac{-21+3\sqrt{751}i}{-600}
Now solve the equation x=\frac{-21±3\sqrt{751}i}{-600} when ± is plus. Add -21 to 3i\sqrt{751}.
x=\frac{-\sqrt{751}i+7}{200}
Divide -21+3i\sqrt{751} by -600.
x=\frac{-3\sqrt{751}i-21}{-600}
Now solve the equation x=\frac{-21±3\sqrt{751}i}{-600} when ± is minus. Subtract 3i\sqrt{751} from -21.
x=\frac{7+\sqrt{751}i}{200}
Divide -21-3i\sqrt{751} by -600.
x=\frac{-\sqrt{751}i+7}{200} x=\frac{7+\sqrt{751}i}{200}
The equation is now solved.
5\left(12x-1\right)\left(-5\right)x=2\left(2x+3\right)
Multiply both sides of the equation by 10, the least common multiple of 2,5.
-25\left(12x-1\right)x=2\left(2x+3\right)
Multiply 5 and -5 to get -25.
\left(-300x+25\right)x=2\left(2x+3\right)
Use the distributive property to multiply -25 by 12x-1.
-300x^{2}+25x=2\left(2x+3\right)
Use the distributive property to multiply -300x+25 by x.
-300x^{2}+25x=4x+6
Use the distributive property to multiply 2 by 2x+3.
-300x^{2}+25x-4x=6
Subtract 4x from both sides.
-300x^{2}+21x=6
Combine 25x and -4x to get 21x.
\frac{-300x^{2}+21x}{-300}=\frac{6}{-300}
Divide both sides by -300.
x^{2}+\frac{21}{-300}x=\frac{6}{-300}
Dividing by -300 undoes the multiplication by -300.
x^{2}-\frac{7}{100}x=\frac{6}{-300}
Reduce the fraction \frac{21}{-300} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{100}x=-\frac{1}{50}
Reduce the fraction \frac{6}{-300} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{7}{100}x+\left(-\frac{7}{200}\right)^{2}=-\frac{1}{50}+\left(-\frac{7}{200}\right)^{2}
Divide -\frac{7}{100}, the coefficient of the x term, by 2 to get -\frac{7}{200}. Then add the square of -\frac{7}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{100}x+\frac{49}{40000}=-\frac{1}{50}+\frac{49}{40000}
Square -\frac{7}{200} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{100}x+\frac{49}{40000}=-\frac{751}{40000}
Add -\frac{1}{50} to \frac{49}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{200}\right)^{2}=-\frac{751}{40000}
Factor x^{2}-\frac{7}{100}x+\frac{49}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{200}\right)^{2}}=\sqrt{-\frac{751}{40000}}
Take the square root of both sides of the equation.
x-\frac{7}{200}=\frac{\sqrt{751}i}{200} x-\frac{7}{200}=-\frac{\sqrt{751}i}{200}
Simplify.
x=\frac{7+\sqrt{751}i}{200} x=\frac{-\sqrt{751}i+7}{200}
Add \frac{7}{200} to both sides of the equation.