Solve for k
k=\frac{x}{\pi }-\frac{1}{3}
Solve for x
x=\pi k+\frac{\pi }{3}
Graph
Share
Copied to clipboard
12x-\pi =3\pi +12k\pi
Multiply both sides of the equation by 6, the least common multiple of 6,2.
3\pi +12k\pi =12x-\pi
Swap sides so that all variable terms are on the left hand side.
12k\pi =12x-\pi -3\pi
Subtract 3\pi from both sides.
12k\pi =12x-4\pi
Combine -\pi and -3\pi to get -4\pi .
12\pi k=12x-4\pi
The equation is in standard form.
\frac{12\pi k}{12\pi }=\frac{12x-4\pi }{12\pi }
Divide both sides by 12\pi .
k=\frac{12x-4\pi }{12\pi }
Dividing by 12\pi undoes the multiplication by 12\pi .
k=\frac{x}{\pi }-\frac{1}{3}
Divide 12x-4\pi by 12\pi .
12x-\pi =3\pi +12k\pi
Multiply both sides of the equation by 6, the least common multiple of 6,2.
12x=3\pi +12k\pi +\pi
Add \pi to both sides.
12x=4\pi +12k\pi
Combine 3\pi and \pi to get 4\pi .
12x=12\pi k+4\pi
The equation is in standard form.
\frac{12x}{12}=\frac{12\pi k+4\pi }{12}
Divide both sides by 12.
x=\frac{12\pi k+4\pi }{12}
Dividing by 12 undoes the multiplication by 12.
x=\pi k+\frac{\pi }{3}
Divide 4\pi +12\pi k by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}