Evaluate
\frac{128}{59}\approx 2.169491525
Factor
\frac{2 ^ {7}}{59} = 2\frac{10}{59} = 2.169491525423729
Share
Copied to clipboard
\begin{array}{l}\phantom{590)}\phantom{1}\\590\overline{)1280}\\\end{array}
Use the 1^{st} digit 1 from dividend 1280
\begin{array}{l}\phantom{590)}0\phantom{2}\\590\overline{)1280}\\\end{array}
Since 1 is less than 590, use the next digit 2 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{590)}0\phantom{3}\\590\overline{)1280}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1280
\begin{array}{l}\phantom{590)}00\phantom{4}\\590\overline{)1280}\\\end{array}
Since 12 is less than 590, use the next digit 8 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{590)}00\phantom{5}\\590\overline{)1280}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1280
\begin{array}{l}\phantom{590)}000\phantom{6}\\590\overline{)1280}\\\end{array}
Since 128 is less than 590, use the next digit 0 from dividend 1280 and add 0 to the quotient
\begin{array}{l}\phantom{590)}000\phantom{7}\\590\overline{)1280}\\\end{array}
Use the 4^{th} digit 0 from dividend 1280
\begin{array}{l}\phantom{590)}0002\phantom{8}\\590\overline{)1280}\\\phantom{590)}\underline{\phantom{}1180\phantom{}}\\\phantom{590)9}100\\\end{array}
Find closest multiple of 590 to 1280. We see that 2 \times 590 = 1180 is the nearest. Now subtract 1180 from 1280 to get reminder 100. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }100
Since 100 is less than 590, stop the division. The reminder is 100. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}