Evaluate
\frac{3\sqrt{23}}{2}\approx 7.193747285
Share
Copied to clipboard
\frac{48}{\frac{64}{\sqrt{92}}}
Subtract 80 from 128 to get 48.
\frac{48}{\frac{64}{2\sqrt{23}}}
Factor 92=2^{2}\times 23. Rewrite the square root of the product \sqrt{2^{2}\times 23} as the product of square roots \sqrt{2^{2}}\sqrt{23}. Take the square root of 2^{2}.
\frac{48}{\frac{64\sqrt{23}}{2\left(\sqrt{23}\right)^{2}}}
Rationalize the denominator of \frac{64}{2\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
\frac{48}{\frac{64\sqrt{23}}{2\times 23}}
The square of \sqrt{23} is 23.
\frac{48}{\frac{32\sqrt{23}}{23}}
Cancel out 2 in both numerator and denominator.
\frac{48\times 23}{32\sqrt{23}}
Divide 48 by \frac{32\sqrt{23}}{23} by multiplying 48 by the reciprocal of \frac{32\sqrt{23}}{23}.
\frac{3\times 23}{2\sqrt{23}}
Cancel out 16 in both numerator and denominator.
\frac{3\times 23\sqrt{23}}{2\left(\sqrt{23}\right)^{2}}
Rationalize the denominator of \frac{3\times 23}{2\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
\frac{3\times 23\sqrt{23}}{2\times 23}
The square of \sqrt{23} is 23.
\frac{69\sqrt{23}}{2\times 23}
Multiply 3 and 23 to get 69.
\frac{69\sqrt{23}}{46}
Multiply 2 and 23 to get 46.
\frac{3}{2}\sqrt{23}
Divide 69\sqrt{23} by 46 to get \frac{3}{2}\sqrt{23}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}