Evaluate
\frac{25}{9}\approx 2.777777778
Factor
\frac{5 ^ {2}}{3 ^ {2}} = 2\frac{7}{9} = 2.7777777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)125}\\\end{array}
Since 1 is less than 45, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)125}\\\end{array}
Since 12 is less than 45, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{45)}002\phantom{6}\\45\overline{)125}\\\phantom{45)}\underline{\phantom{9}90\phantom{}}\\\phantom{45)9}35\\\end{array}
Find closest multiple of 45 to 125. We see that 2 \times 45 = 90 is the nearest. Now subtract 90 from 125 to get reminder 35. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }35
Since 35 is less than 45, stop the division. The reminder is 35. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}