Evaluate
\frac{45}{28}\approx 1.607142857
Factor
\frac{3 ^ {2} \cdot 5}{2 ^ {2} \cdot 7} = 1\frac{17}{28} = 1.6071428571428572
Share
Copied to clipboard
\frac{5}{4}-\frac{0\times 75-\frac{6}{10}\times \frac{25}{90}}{\frac{42}{90}}
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{5}{4}-\frac{0-\frac{6}{10}\times \frac{25}{90}}{\frac{42}{90}}
Multiply 0 and 75 to get 0.
\frac{5}{4}-\frac{0-\frac{3}{5}\times \frac{25}{90}}{\frac{42}{90}}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{5}{4}-\frac{0-\frac{3}{5}\times \frac{5}{18}}{\frac{42}{90}}
Reduce the fraction \frac{25}{90} to lowest terms by extracting and canceling out 5.
\frac{5}{4}-\frac{0-\frac{3\times 5}{5\times 18}}{\frac{42}{90}}
Multiply \frac{3}{5} times \frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}-\frac{0-\frac{3}{18}}{\frac{42}{90}}
Cancel out 5 in both numerator and denominator.
\frac{5}{4}-\frac{0-\frac{1}{6}}{\frac{42}{90}}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{5}{4}-\frac{-\frac{1}{6}}{\frac{42}{90}}
Subtract \frac{1}{6} from 0 to get -\frac{1}{6}.
\frac{5}{4}-\frac{-\frac{1}{6}}{\frac{7}{15}}
Reduce the fraction \frac{42}{90} to lowest terms by extracting and canceling out 6.
\frac{5}{4}-\left(-\frac{1}{6}\times \frac{15}{7}\right)
Divide -\frac{1}{6} by \frac{7}{15} by multiplying -\frac{1}{6} by the reciprocal of \frac{7}{15}.
\frac{5}{4}-\frac{-15}{6\times 7}
Multiply -\frac{1}{6} times \frac{15}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}-\frac{-15}{42}
Do the multiplications in the fraction \frac{-15}{6\times 7}.
\frac{5}{4}-\left(-\frac{5}{14}\right)
Reduce the fraction \frac{-15}{42} to lowest terms by extracting and canceling out 3.
\frac{5}{4}+\frac{5}{14}
The opposite of -\frac{5}{14} is \frac{5}{14}.
\frac{35}{28}+\frac{10}{28}
Least common multiple of 4 and 14 is 28. Convert \frac{5}{4} and \frac{5}{14} to fractions with denominator 28.
\frac{35+10}{28}
Since \frac{35}{28} and \frac{10}{28} have the same denominator, add them by adding their numerators.
\frac{45}{28}
Add 35 and 10 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}