Evaluate
\frac{1211}{900}\approx 1.345555556
Factor
\frac{7 \cdot 173}{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {2}} = 1\frac{311}{900} = 1.3455555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)1211}\\\end{array}
Use the 1^{st} digit 1 from dividend 1211
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)1211}\\\end{array}
Since 1 is less than 900, use the next digit 2 from dividend 1211 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)1211}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1211
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)1211}\\\end{array}
Since 12 is less than 900, use the next digit 1 from dividend 1211 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)1211}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1211
\begin{array}{l}\phantom{900)}000\phantom{6}\\900\overline{)1211}\\\end{array}
Since 121 is less than 900, use the next digit 1 from dividend 1211 and add 0 to the quotient
\begin{array}{l}\phantom{900)}000\phantom{7}\\900\overline{)1211}\\\end{array}
Use the 4^{th} digit 1 from dividend 1211
\begin{array}{l}\phantom{900)}0001\phantom{8}\\900\overline{)1211}\\\phantom{900)}\underline{\phantom{9}900\phantom{}}\\\phantom{900)9}311\\\end{array}
Find closest multiple of 900 to 1211. We see that 1 \times 900 = 900 is the nearest. Now subtract 900 from 1211 to get reminder 311. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }311
Since 311 is less than 900, stop the division. The reminder is 311. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}