Evaluate
\frac{401}{80}=5.0125
Factor
\frac{401}{2 ^ {4} \cdot 5} = 5\frac{1}{80} = 5.0125
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)1203}\\\end{array}
Use the 1^{st} digit 1 from dividend 1203
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)1203}\\\end{array}
Since 1 is less than 240, use the next digit 2 from dividend 1203 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)1203}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1203
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)1203}\\\end{array}
Since 12 is less than 240, use the next digit 0 from dividend 1203 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)1203}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1203
\begin{array}{l}\phantom{240)}000\phantom{6}\\240\overline{)1203}\\\end{array}
Since 120 is less than 240, use the next digit 3 from dividend 1203 and add 0 to the quotient
\begin{array}{l}\phantom{240)}000\phantom{7}\\240\overline{)1203}\\\end{array}
Use the 4^{th} digit 3 from dividend 1203
\begin{array}{l}\phantom{240)}0005\phantom{8}\\240\overline{)1203}\\\phantom{240)}\underline{\phantom{}1200\phantom{}}\\\phantom{240)999}3\\\end{array}
Find closest multiple of 240 to 1203. We see that 5 \times 240 = 1200 is the nearest. Now subtract 1200 from 1203 to get reminder 3. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }3
Since 3 is less than 240, stop the division. The reminder is 3. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}