Evaluate
\frac{16}{5}=3.2
Factor
\frac{2 ^ {4}}{5} = 3\frac{1}{5} = 3.2
Share
Copied to clipboard
\begin{array}{l}\phantom{375)}\phantom{1}\\375\overline{)1200}\\\end{array}
Use the 1^{st} digit 1 from dividend 1200
\begin{array}{l}\phantom{375)}0\phantom{2}\\375\overline{)1200}\\\end{array}
Since 1 is less than 375, use the next digit 2 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{375)}0\phantom{3}\\375\overline{)1200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1200
\begin{array}{l}\phantom{375)}00\phantom{4}\\375\overline{)1200}\\\end{array}
Since 12 is less than 375, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{375)}00\phantom{5}\\375\overline{)1200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1200
\begin{array}{l}\phantom{375)}000\phantom{6}\\375\overline{)1200}\\\end{array}
Since 120 is less than 375, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{375)}000\phantom{7}\\375\overline{)1200}\\\end{array}
Use the 4^{th} digit 0 from dividend 1200
\begin{array}{l}\phantom{375)}0003\phantom{8}\\375\overline{)1200}\\\phantom{375)}\underline{\phantom{}1125\phantom{}}\\\phantom{375)99}75\\\end{array}
Find closest multiple of 375 to 1200. We see that 3 \times 375 = 1125 is the nearest. Now subtract 1125 from 1200 to get reminder 75. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }75
Since 75 is less than 375, stop the division. The reminder is 75. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}