Solve for x
x = \frac{3 \sqrt{1601} + 117}{2} \approx 118.518747071
x=\frac{117-3\sqrt{1601}}{2}\approx -1.518747071
Graph
Share
Copied to clipboard
\left(x+3\right)\times 120+x\times 120=2x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+3\right), the least common multiple of x,x+3.
120x+360+x\times 120=2x\left(x+3\right)
Use the distributive property to multiply x+3 by 120.
240x+360=2x\left(x+3\right)
Combine 120x and x\times 120 to get 240x.
240x+360=2x^{2}+6x
Use the distributive property to multiply 2x by x+3.
240x+360-2x^{2}=6x
Subtract 2x^{2} from both sides.
240x+360-2x^{2}-6x=0
Subtract 6x from both sides.
234x+360-2x^{2}=0
Combine 240x and -6x to get 234x.
-2x^{2}+234x+360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-234±\sqrt{234^{2}-4\left(-2\right)\times 360}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 234 for b, and 360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-234±\sqrt{54756-4\left(-2\right)\times 360}}{2\left(-2\right)}
Square 234.
x=\frac{-234±\sqrt{54756+8\times 360}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-234±\sqrt{54756+2880}}{2\left(-2\right)}
Multiply 8 times 360.
x=\frac{-234±\sqrt{57636}}{2\left(-2\right)}
Add 54756 to 2880.
x=\frac{-234±6\sqrt{1601}}{2\left(-2\right)}
Take the square root of 57636.
x=\frac{-234±6\sqrt{1601}}{-4}
Multiply 2 times -2.
x=\frac{6\sqrt{1601}-234}{-4}
Now solve the equation x=\frac{-234±6\sqrt{1601}}{-4} when ± is plus. Add -234 to 6\sqrt{1601}.
x=\frac{117-3\sqrt{1601}}{2}
Divide -234+6\sqrt{1601} by -4.
x=\frac{-6\sqrt{1601}-234}{-4}
Now solve the equation x=\frac{-234±6\sqrt{1601}}{-4} when ± is minus. Subtract 6\sqrt{1601} from -234.
x=\frac{3\sqrt{1601}+117}{2}
Divide -234-6\sqrt{1601} by -4.
x=\frac{117-3\sqrt{1601}}{2} x=\frac{3\sqrt{1601}+117}{2}
The equation is now solved.
\left(x+3\right)\times 120+x\times 120=2x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+3\right), the least common multiple of x,x+3.
120x+360+x\times 120=2x\left(x+3\right)
Use the distributive property to multiply x+3 by 120.
240x+360=2x\left(x+3\right)
Combine 120x and x\times 120 to get 240x.
240x+360=2x^{2}+6x
Use the distributive property to multiply 2x by x+3.
240x+360-2x^{2}=6x
Subtract 2x^{2} from both sides.
240x+360-2x^{2}-6x=0
Subtract 6x from both sides.
234x+360-2x^{2}=0
Combine 240x and -6x to get 234x.
234x-2x^{2}=-360
Subtract 360 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+234x=-360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+234x}{-2}=-\frac{360}{-2}
Divide both sides by -2.
x^{2}+\frac{234}{-2}x=-\frac{360}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-117x=-\frac{360}{-2}
Divide 234 by -2.
x^{2}-117x=180
Divide -360 by -2.
x^{2}-117x+\left(-\frac{117}{2}\right)^{2}=180+\left(-\frac{117}{2}\right)^{2}
Divide -117, the coefficient of the x term, by 2 to get -\frac{117}{2}. Then add the square of -\frac{117}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-117x+\frac{13689}{4}=180+\frac{13689}{4}
Square -\frac{117}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-117x+\frac{13689}{4}=\frac{14409}{4}
Add 180 to \frac{13689}{4}.
\left(x-\frac{117}{2}\right)^{2}=\frac{14409}{4}
Factor x^{2}-117x+\frac{13689}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{117}{2}\right)^{2}}=\sqrt{\frac{14409}{4}}
Take the square root of both sides of the equation.
x-\frac{117}{2}=\frac{3\sqrt{1601}}{2} x-\frac{117}{2}=-\frac{3\sqrt{1601}}{2}
Simplify.
x=\frac{3\sqrt{1601}+117}{2} x=\frac{117-3\sqrt{1601}}{2}
Add \frac{117}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}