Evaluate
\frac{120}{49}\approx 2.448979592
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5}{7 ^ {2}} = 2\frac{22}{49} = 2.4489795918367347
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)120}\\\end{array}
Use the 1^{st} digit 1 from dividend 120
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)120}\\\end{array}
Since 1 is less than 49, use the next digit 2 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)120}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)120}\\\end{array}
Since 12 is less than 49, use the next digit 0 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)120}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120
\begin{array}{l}\phantom{49)}002\phantom{6}\\49\overline{)120}\\\phantom{49)}\underline{\phantom{9}98\phantom{}}\\\phantom{49)9}22\\\end{array}
Find closest multiple of 49 to 120. We see that 2 \times 49 = 98 is the nearest. Now subtract 98 from 120 to get reminder 22. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }22
Since 22 is less than 49, stop the division. The reminder is 22. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}