Solve for y
y = \frac{\sqrt{1249} - 15}{2} \approx 10.170597047
y=\frac{-\sqrt{1249}-15}{2}\approx -25.170597047
Graph
Share
Copied to clipboard
12\left(50+\left(12-1\right)\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply both sides of the equation by 2.
12\left(50+11\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Subtract 1 from 12 to get 11.
12\left(50+55\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 11 and 5 to get 55.
12\times 105+94=y\left(80+\left(y-1\right)\times 5\right)+74
Add 50 and 55 to get 105.
1260+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 12 and 105 to get 1260.
1354=y\left(80+\left(y-1\right)\times 5\right)+74
Add 1260 and 94 to get 1354.
1354=y\left(80+5y-5\right)+74
Use the distributive property to multiply y-1 by 5.
1354=y\left(75+5y\right)+74
Subtract 5 from 80 to get 75.
1354=75y+5y^{2}+74
Use the distributive property to multiply y by 75+5y.
75y+5y^{2}+74=1354
Swap sides so that all variable terms are on the left hand side.
75y+5y^{2}+74-1354=0
Subtract 1354 from both sides.
75y+5y^{2}-1280=0
Subtract 1354 from 74 to get -1280.
5y^{2}+75y-1280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-75±\sqrt{75^{2}-4\times 5\left(-1280\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 75 for b, and -1280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-75±\sqrt{5625-4\times 5\left(-1280\right)}}{2\times 5}
Square 75.
y=\frac{-75±\sqrt{5625-20\left(-1280\right)}}{2\times 5}
Multiply -4 times 5.
y=\frac{-75±\sqrt{5625+25600}}{2\times 5}
Multiply -20 times -1280.
y=\frac{-75±\sqrt{31225}}{2\times 5}
Add 5625 to 25600.
y=\frac{-75±5\sqrt{1249}}{2\times 5}
Take the square root of 31225.
y=\frac{-75±5\sqrt{1249}}{10}
Multiply 2 times 5.
y=\frac{5\sqrt{1249}-75}{10}
Now solve the equation y=\frac{-75±5\sqrt{1249}}{10} when ± is plus. Add -75 to 5\sqrt{1249}.
y=\frac{\sqrt{1249}-15}{2}
Divide -75+5\sqrt{1249} by 10.
y=\frac{-5\sqrt{1249}-75}{10}
Now solve the equation y=\frac{-75±5\sqrt{1249}}{10} when ± is minus. Subtract 5\sqrt{1249} from -75.
y=\frac{-\sqrt{1249}-15}{2}
Divide -75-5\sqrt{1249} by 10.
y=\frac{\sqrt{1249}-15}{2} y=\frac{-\sqrt{1249}-15}{2}
The equation is now solved.
12\left(50+\left(12-1\right)\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply both sides of the equation by 2.
12\left(50+11\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Subtract 1 from 12 to get 11.
12\left(50+55\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 11 and 5 to get 55.
12\times 105+94=y\left(80+\left(y-1\right)\times 5\right)+74
Add 50 and 55 to get 105.
1260+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 12 and 105 to get 1260.
1354=y\left(80+\left(y-1\right)\times 5\right)+74
Add 1260 and 94 to get 1354.
1354=y\left(80+5y-5\right)+74
Use the distributive property to multiply y-1 by 5.
1354=y\left(75+5y\right)+74
Subtract 5 from 80 to get 75.
1354=75y+5y^{2}+74
Use the distributive property to multiply y by 75+5y.
75y+5y^{2}+74=1354
Swap sides so that all variable terms are on the left hand side.
75y+5y^{2}=1354-74
Subtract 74 from both sides.
75y+5y^{2}=1280
Subtract 74 from 1354 to get 1280.
5y^{2}+75y=1280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5y^{2}+75y}{5}=\frac{1280}{5}
Divide both sides by 5.
y^{2}+\frac{75}{5}y=\frac{1280}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}+15y=\frac{1280}{5}
Divide 75 by 5.
y^{2}+15y=256
Divide 1280 by 5.
y^{2}+15y+\left(\frac{15}{2}\right)^{2}=256+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+15y+\frac{225}{4}=256+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+15y+\frac{225}{4}=\frac{1249}{4}
Add 256 to \frac{225}{4}.
\left(y+\frac{15}{2}\right)^{2}=\frac{1249}{4}
Factor y^{2}+15y+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1249}{4}}
Take the square root of both sides of the equation.
y+\frac{15}{2}=\frac{\sqrt{1249}}{2} y+\frac{15}{2}=-\frac{\sqrt{1249}}{2}
Simplify.
y=\frac{\sqrt{1249}-15}{2} y=\frac{-\sqrt{1249}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}