Evaluate
\frac{825\sqrt{3}-1485}{2}\approx -28.029041878
Factor
\frac{165 {(5 \sqrt{3} - 9)}}{2} = -28.029041877838196
Share
Copied to clipboard
\frac{12\left(-55\right)}{12+\frac{2\times 10}{\sqrt{3}}}
Subtract 175 from 120 to get -55.
\frac{-660}{12+\frac{2\times 10}{\sqrt{3}}}
Multiply 12 and -55 to get -660.
\frac{-660}{12+\frac{20}{\sqrt{3}}}
Multiply 2 and 10 to get 20.
\frac{-660}{12+\frac{20\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{20}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-660}{12+\frac{20\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{-660}{\frac{12\times 3}{3}+\frac{20\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{3}{3}.
\frac{-660}{\frac{12\times 3+20\sqrt{3}}{3}}
Since \frac{12\times 3}{3} and \frac{20\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{-660}{\frac{36+20\sqrt{3}}{3}}
Do the multiplications in 12\times 3+20\sqrt{3}.
\frac{-660\times 3}{36+20\sqrt{3}}
Divide -660 by \frac{36+20\sqrt{3}}{3} by multiplying -660 by the reciprocal of \frac{36+20\sqrt{3}}{3}.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{\left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right)}
Rationalize the denominator of \frac{-660\times 3}{36+20\sqrt{3}} by multiplying numerator and denominator by 36-20\sqrt{3}.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
Consider \left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
Multiply -660 and 3 to get -1980.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-\left(20\sqrt{3}\right)^{2}}
Calculate 36 to the power of 2 and get 1296.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-20^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(20\sqrt{3}\right)^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\left(\sqrt{3}\right)^{2}}
Calculate 20 to the power of 2 and get 400.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\times 3}
The square of \sqrt{3} is 3.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-1200}
Multiply 400 and 3 to get 1200.
\frac{-1980\left(36-20\sqrt{3}\right)}{96}
Subtract 1200 from 1296 to get 96.
-\frac{165}{8}\left(36-20\sqrt{3}\right)
Divide -1980\left(36-20\sqrt{3}\right) by 96 to get -\frac{165}{8}\left(36-20\sqrt{3}\right).
-\frac{165}{8}\times 36-\frac{165}{8}\left(-20\right)\sqrt{3}
Use the distributive property to multiply -\frac{165}{8} by 36-20\sqrt{3}.
\frac{-165\times 36}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
Express -\frac{165}{8}\times 36 as a single fraction.
\frac{-5940}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
Multiply -165 and 36 to get -5940.
-\frac{1485}{2}-\frac{165}{8}\left(-20\right)\sqrt{3}
Reduce the fraction \frac{-5940}{8} to lowest terms by extracting and canceling out 4.
-\frac{1485}{2}+\frac{-165\left(-20\right)}{8}\sqrt{3}
Express -\frac{165}{8}\left(-20\right) as a single fraction.
-\frac{1485}{2}+\frac{3300}{8}\sqrt{3}
Multiply -165 and -20 to get 3300.
-\frac{1485}{2}+\frac{825}{2}\sqrt{3}
Reduce the fraction \frac{3300}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}