Solve for c
\left\{\begin{matrix}c=\frac{h}{60m^{3}}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&h=0\text{ and }m=0\end{matrix}\right.
Solve for h
h=60cm^{3}
Share
Copied to clipboard
12\times 4h=2880cm^{3}
Multiply both sides of the equation by 3.
48h=2880cm^{3}
Multiply 12 and 4 to get 48.
2880cm^{3}=48h
Swap sides so that all variable terms are on the left hand side.
2880m^{3}c=48h
The equation is in standard form.
\frac{2880m^{3}c}{2880m^{3}}=\frac{48h}{2880m^{3}}
Divide both sides by 2880m^{3}.
c=\frac{48h}{2880m^{3}}
Dividing by 2880m^{3} undoes the multiplication by 2880m^{3}.
c=\frac{h}{60m^{3}}
Divide 48h by 2880m^{3}.
12\times 4h=2880cm^{3}
Multiply both sides of the equation by 3.
48h=2880cm^{3}
Multiply 12 and 4 to get 48.
\frac{48h}{48}=\frac{2880cm^{3}}{48}
Divide both sides by 48.
h=\frac{2880cm^{3}}{48}
Dividing by 48 undoes the multiplication by 48.
h=60cm^{3}
Divide 2880cm^{3} by 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}