Evaluate
\frac{32}{35}\approx 0.914285714
Factor
\frac{2 ^ {5}}{5 \cdot 7} = 0.9142857142857143
Share
Copied to clipboard
\frac{12}{7}-\left(-\frac{2}{17}\times \frac{34}{-5}\right)
Fraction \frac{-2}{17} can be rewritten as -\frac{2}{17} by extracting the negative sign.
\frac{12}{7}-\left(-\frac{2}{17}\left(-\frac{34}{5}\right)\right)
Fraction \frac{34}{-5} can be rewritten as -\frac{34}{5} by extracting the negative sign.
\frac{12}{7}-\frac{-2\left(-34\right)}{17\times 5}
Multiply -\frac{2}{17} times -\frac{34}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{7}-\frac{68}{85}
Do the multiplications in the fraction \frac{-2\left(-34\right)}{17\times 5}.
\frac{12}{7}-\frac{4}{5}
Reduce the fraction \frac{68}{85} to lowest terms by extracting and canceling out 17.
\frac{60}{35}-\frac{28}{35}
Least common multiple of 7 and 5 is 35. Convert \frac{12}{7} and \frac{4}{5} to fractions with denominator 35.
\frac{60-28}{35}
Since \frac{60}{35} and \frac{28}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{35}
Subtract 28 from 60 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}