Solve for x
x=\frac{21}{43}\approx 0.488372093
Graph
Share
Copied to clipboard
\frac{24}{10}-\frac{45}{10}=-\frac{9}{5}x-\frac{5}{2}x
Least common multiple of 5 and 2 is 10. Convert \frac{12}{5} and \frac{9}{2} to fractions with denominator 10.
\frac{24-45}{10}=-\frac{9}{5}x-\frac{5}{2}x
Since \frac{24}{10} and \frac{45}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{10}=-\frac{9}{5}x-\frac{5}{2}x
Subtract 45 from 24 to get -21.
-\frac{21}{10}=-\frac{43}{10}x
Combine -\frac{9}{5}x and -\frac{5}{2}x to get -\frac{43}{10}x.
-\frac{43}{10}x=-\frac{21}{10}
Swap sides so that all variable terms are on the left hand side.
x=-\frac{21}{10}\left(-\frac{10}{43}\right)
Multiply both sides by -\frac{10}{43}, the reciprocal of -\frac{43}{10}.
x=\frac{-21\left(-10\right)}{10\times 43}
Multiply -\frac{21}{10} times -\frac{10}{43} by multiplying numerator times numerator and denominator times denominator.
x=\frac{210}{430}
Do the multiplications in the fraction \frac{-21\left(-10\right)}{10\times 43}.
x=\frac{21}{43}
Reduce the fraction \frac{210}{430} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}