Solve for x
x = \frac{475 \sqrt{57} - 285}{472} \approx 6.994007112
Graph
Share
Copied to clipboard
5x\times \frac{12}{5}+5\times 57-\sqrt{57}\times 5x=15x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of 5,1x.
12x+5\times 57-\sqrt{57}\times 5x=15x
Multiply 5 and \frac{12}{5} to get 12.
12x+285-\sqrt{57}\times 5x=15x
Multiply 5 and 57 to get 285.
12x+285-5\sqrt{57}x=15x
Multiply -1 and 5 to get -5.
12x+285-5\sqrt{57}x-15x=0
Subtract 15x from both sides.
-3x+285-5\sqrt{57}x=0
Combine 12x and -15x to get -3x.
-3x-5\sqrt{57}x=-285
Subtract 285 from both sides. Anything subtracted from zero gives its negation.
\left(-3-5\sqrt{57}\right)x=-285
Combine all terms containing x.
\left(-5\sqrt{57}-3\right)x=-285
The equation is in standard form.
\frac{\left(-5\sqrt{57}-3\right)x}{-5\sqrt{57}-3}=-\frac{285}{-5\sqrt{57}-3}
Divide both sides by -3-5\sqrt{57}.
x=-\frac{285}{-5\sqrt{57}-3}
Dividing by -3-5\sqrt{57} undoes the multiplication by -3-5\sqrt{57}.
x=\frac{475\sqrt{57}-285}{472}
Divide -285 by -3-5\sqrt{57}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}