Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3}{2+\sqrt{5}}
Rationalize the denominator of \frac{12}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{12\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}-\frac{3}{2+\sqrt{5}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(3+\sqrt{5}\right)}{9-5}-\frac{3}{2+\sqrt{5}}
Square 3. Square \sqrt{5}.
\frac{12\left(3+\sqrt{5}\right)}{4}-\frac{3}{2+\sqrt{5}}
Subtract 5 from 9 to get 4.
3\left(3+\sqrt{5}\right)-\frac{3}{2+\sqrt{5}}
Divide 12\left(3+\sqrt{5}\right) by 4 to get 3\left(3+\sqrt{5}\right).
3\left(3+\sqrt{5}\right)-\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}
Rationalize the denominator of \frac{3}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
3\left(3+\sqrt{5}\right)-\frac{3\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(3+\sqrt{5}\right)-\frac{3\left(2-\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
3\left(3+\sqrt{5}\right)-\frac{3\left(2-\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
3\left(3+\sqrt{5}\right)-\left(-3\left(2-\sqrt{5}\right)\right)
Anything divided by -1 gives its opposite.
3\left(3+\sqrt{5}\right)+3\left(2-\sqrt{5}\right)
The opposite of -3\left(2-\sqrt{5}\right) is 3\left(2-\sqrt{5}\right).
9+3\sqrt{5}+3\left(2-\sqrt{5}\right)
Use the distributive property to multiply 3 by 3+\sqrt{5}.
9+3\sqrt{5}+6-3\sqrt{5}
Use the distributive property to multiply 3 by 2-\sqrt{5}.
15+3\sqrt{5}-3\sqrt{5}
Add 9 and 6 to get 15.
15
Combine 3\sqrt{5} and -3\sqrt{5} to get 0.