Solve for x
x>\frac{120}{19}
Graph
Share
Copied to clipboard
12\times 600+300x>15\left(600+x\right)
Multiply both sides of the equation by 100. Since 100 is positive, the inequality direction remains the same.
7200+300x>15\left(600+x\right)
Multiply 12 and 600 to get 7200.
7200+300x>9000+15x
Use the distributive property to multiply 15 by 600+x.
7200+300x-15x>9000
Subtract 15x from both sides.
7200+285x>9000
Combine 300x and -15x to get 285x.
285x>9000-7200
Subtract 7200 from both sides.
285x>1800
Subtract 7200 from 9000 to get 1800.
x>\frac{1800}{285}
Divide both sides by 285. Since 285 is positive, the inequality direction remains the same.
x>\frac{120}{19}
Reduce the fraction \frac{1800}{285} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}